
CS 480/680 Winter 2024:
Lecture Notes

1 Classic Machine Learning 2
1 Introduction . 2
2 Perceptron . 4
3 Linear Regression . 8
4 Logistic Regression . 10
5 Hard-Margin Support Vector Machines . 12
6 Soft-Margin Support Vector Machines . 14
7 Reproducing Kernels . 17
8 Gradient Descent . 20

2 Neural Networks 25
9 Multilayer Perceptron . 25
10 Convolutional Neural Networks . 28

Back Matter 31
List of Named Results . 31
Index of Defined Terms . 32

Lecture notes taken, unless otherwise specified, by myself during section 002 of the Winter 2024
offering of CS 480/680, taught by Hongyang Zheng.

Lectures

Lecture 1 Jan 9 2
Lecture 2 Jan 11 2
Lecture 3 Jan 16 6
Lecture 4 Jan 18 8
Lecture 5 Jan 23 8

Lecture 6 Jan 25 12
Lecture 7 Jan 30 14
Lecture 8 Feb 1 17
Lecture 9 Feb 6 20
Lecture 10 Feb 8 23
Lecture 11 Feb 13 26
Lecture 12 Feb 15 28

1

Chapter 1

Classic Machine Learning

1 Introduction

Lecture 1
Jan 9There have been three historical AI booms:

1. 1950s–1970s: search-based algorithms (e.g., chess), failed when they realized AI is actually a
hard problem

2. 1980s–1990s: expert systems
3. 2012 – present: deep learning

Machine learning is the subset of AI where a program can learn from experience.

Major learning paradigms of machine learning:

• Supervised learning: teacher/human labels answers (e.g., classification, ranking, etc.)
• Unsupervised learning: without labels (e.g., clustering, representation, generation, etc.)
• Reinforcement learning: rewards given for actions (e.g., gaming, pricing, etc.)
• Others: semi-supervised, active learning, etc.

Active focuses in machine learning research:

• Representation: improving the encoding of data into a space
• Generalization: improving the use of the model on new distributions
• Interpretation: understanding how deep learning actually works
• Complexity: improving time/space requirements
• Efficiency: reducing the amount of samples required
• Privacy: respecting legal/ethical concerns of data sourcing
• Robustness: gracefully failing under errors or malicious attack
• Applications

Lecture 2
Jan 11A machine learning algorithm has three phases: training, prediction, and evaluation.

2

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 1.1 (dataset)
A datasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdataset consists of a list of featuresfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeatures x1,… ,x𝑛,x′

1,… ,x′
𝑚 ∈ ℝ𝑑 which are 𝑑-dimensional

vectors and a label vector y⊺ ∈ ℝ𝑛.

Each training sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sample x𝑖 is associated with a labellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabel 𝑦𝑖. A test sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sample x′
𝑖 may or may not be

labelled.

Example 1.2 (email filtering). Suppose we have a list 𝐷 of 𝑑 English words.

Define the training set 𝑋 = [x1,… ,x𝑛] ∈ ℝ𝑑×𝑛 and y = [𝑦1,… , 𝑦𝑛] ∈ {±1}𝑛 such that x𝑖𝑗 = 1
if the word 𝑗 ∈ 𝐷 appears in email 𝑖 (this is the bag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representation):

x1 x2 x3 x4 x5 x6 x′

and 1 0 0 1 1 1 1
viagra 1 0 1 0 0 0 1

the 0 1 1 0 1 1 0
of 1 1 0 1 0 1 0

nigeria 1 0 0 0 1 0 0
𝑦 + − + − + − ?

Then, given a new email x′
1, we must determine if it is spam or not.

Example 1.3 (OR dataset). We want to train the OR function:

x1 x2 x3 x4
0 1 0 1
0 0 1 1

𝑦 − + + +

This can be represented graphically by finding a line dividing the points:

−0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

3

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

2 Perceptron

Definition 2.1
The inner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner product of vectors ⟨a,b⟩ is the sum of the element-wise product ∑𝑗 𝑎𝑗𝑏𝑗.

A linear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear function is a function 𝑓 ∶ ℝ𝑑 → ℝ𝑑 such that for all 𝛼, 𝛽 ∈ ℝ, x, z ∈ ℝ𝑑, 𝑓(𝛼x+𝛽z) =
𝛼𝑓(x) + 𝛽𝑓(z).

Theorem 2.2 (linear duality)
A function is linear if and only if there exists w ∈ ℝ𝑑 such that 𝑓(x) = ⟨x,w⟩.

Proof. (⇒) Suppose 𝑓 is linear. Let w ∶= [𝑓(e1),… , 𝑓(e𝑑)] where e𝑖 are coordinate vectors. Then:

𝑓(x) = 𝑓(𝑥1e1 +⋯+ 𝑥𝑑e𝑑)
= 𝑥1𝑓(e1) + ⋯ + 𝑥𝑑𝑓(e𝑑)
= ⟨x,w⟩

by linearity of 𝑓.

(⇐) Suppose there exists w such that 𝑓(x) = ⟨x,w⟩. Then:

𝑓(𝛼x + 𝛽z) = ⟨𝛼x + 𝛽z,w, 𝛼x + 𝛽z,w⟩
= 𝛼 ⟨x,w⟩ + 𝛽 ⟨x,w⟩
= 𝛼𝑓(x) + 𝛽𝑓(z)

since inner products are linear in the first argument.

Definition 2.3 (affine function)
A function 𝑓(x) where there exist w ∈ ℝ𝑑 and biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias 𝑏 ∈ ℝ such that 𝑓(x) = ⟨x,w⟩ + 𝑏.

Definition 2.4 (sign function)

sgn(𝑡) = {
+1 𝑡 > 0
−1 𝑡 ≤ 0

It does not matter what sgn(0) is defined as.

Definition 2.5 (linear classifier)
̂𝑦 = sgn(⟨x,w⟩ + 𝑏)

The parameters w and 𝑏 will uniquely determine the linear classifier.

4

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Example 2.6 (geometric interpretation). We can interpret ̂𝑦 > 0 as a halfspace (see CO 250).
Then, we can draw something like:

w

𝑥1

𝑥2

Proposition 2.7
The vector w is orthogonal to the decision boundary 𝐻.

Proof. Let x,x′ ∈ 𝐻 be vectors on the boundary 𝐻 = {𝑥 ∶ ⟨w,x⟩ + 𝑏 = 0}. Then, we must show
x′ − x = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗xx′ ⟂ w.

We can calculate ⟨w,x′ − x⟩ = ⟨w,x⟩ − ⟨w,x′⟩ = −𝑏 − (−𝑏) = 0.

Originally, the inventor of the perceptron thought it could do anything. He was (obviously) wrong.

Algorithm 1 Training Perceptron
Require: Dataset (x𝑖, y𝑖) ∈ ℝ𝑑 × {±1}, initialization w0 ∈ ℝ𝑑, 𝑏0 ∈ ℝ.
Ensure: w and 𝑏 for linear classifier sgn(⟨x,w⟩ + 𝑏)

for 𝑡 = 1, 2,… do
receive index 𝐼𝑡 ∈ {1,… , 𝑛}
if y𝐼𝑡

(⟨x𝐼𝑡
,w⟩ + 𝑏) ≤ 0 then

w ← w + y𝐼𝑡
x𝐼𝑡

𝑏 ← 𝑏 + y𝐼𝑡

In a perceptron, we train by adjusting w and 𝑏 whenever a training data feature is classified “wrong”
(i.e., scorew,𝑏(x) ∶= y ̂𝑦 < 0 ⟺ the signs disagree).

The perceptron solves the feasibility problem

Find w ∈ ℝ𝑑, 𝑏 ∈ ℝ such that ∀𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) > 0

by iterating one-by-one. It will converge “faster” (with fewer 𝑡-iterations) if the data is “easy”.

Consider what happens when there is a “wrong” classification. Let w𝑘+1 = 𝑤𝑘+yx and 𝑏𝑘+1 = 𝑏𝑘+y.

5

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Then, the updated score is:

scorew𝑘+1,𝑏𝑘+1
(x) = y ⋅ (⟨x,w𝑘+1⟩ + 𝑏𝑘+1)

= y ⋅ (⟨x,w𝑘 + yx⟩ + 𝑏𝑘 + y)
= y ⋅ (⟨x,w𝑘⟩ + 𝑏𝑘) + ⟨x,x⟩ + 1

= y ⋅ (⟨x,w𝑘⟩ + 𝑏𝑘) + ‖x‖2
2 + 1⏟

always positive

which is always an increase over the previous “wrong” score.

↓ Lectures 3 and 4 taken slides and Neysa since I was sick ↓ Lecture 3
Jan 16

Instead of writing the affine function ⟨x,w⟩ + 𝑏, write ⟨x,w⟩ = ⟨(x
1),(w

𝑏)⟩.

Then, the update rule becomes w ← w + yx.

Theorem 2.8 (convergence theorem)
Suppose there exists w∗ such that y𝑖 ⟨x𝑖,w∗,x𝑖,w∗⟩ > 0 for all 𝑖. Assume that ‖x𝑖‖2 ≤ 𝐶 for
all 𝑖, and we normalize the w∗ such that ‖w∗‖2 = 1. Define the margin 𝛾 ∶= min𝑖 |⟨x𝑖,w∗⟩|.

Then, the perceptron algorithm converges after 𝐶2/𝛾2 mistakes.

Proof. Recall the update on the mistake (x, y) is w ← w + yx.

Then, the inner product ⟨w,w∗⟩ is

⟨w + yx,w∗⟩ = ⟨w,w∗⟩ + y ⟨x,w∗⟩
= ⟨w,w∗⟩ + |⟨x,w∗⟩|
≥ ⟨w,w∗⟩ + 𝛾

because y ⟨x,w∗⟩ must be positive if w∗ is optimal. So for each update, ⟨w,w∗⟩ grows by at least
𝛾 > 0. That is, after 𝑀 updates, ⟨w,w∗⟩ ≥ 𝑀𝛾.

Likewise, the inner product ⟨w,w⟩ is

⟨w + yx,w + yx⟩ = ⟨w,w⟩ + 2y ⟨w,x⟩⏟
< 0 because an update means it’s wrong

+
∈ [0, 𝐶2] by construction

⏞y2 ⟨w,w⟩

≤ ⟨w,w⟩ + 𝐶2

so each update grows ⟨w,w⟩ by at most 𝐶2, meaning that after 𝑀 updates, ⟨w,w⟩ ≤ 𝑀𝐶2.

Finally, recall from linear algebra that 1 ≥ cos(w,w∗) = ⟨w,w∗⟩
‖w‖2‖w∗‖2

. Then,

1 ≥
⟨w,w∗⟩

‖w‖2 ⋅ ‖w∗‖2

≥
𝑀𝛾

√
𝑀𝐶2 ⋅ 1

=
√
𝑀

𝛾
𝐶

which implies 𝑀 ≤ 𝐶2/𝛾2.

6

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Therefore, the larger the margin 𝛾 is, the more linearly separable the data is, and the faster the
perceptron algorithm will converge.

Optimization perspective We can equivalently characterize the perceptron algorithm as an op-
timization problem. Given the linear classifier ̂𝑦 = sgn(⟨w,x⟩), we want to minimize the perceptron
loss

ℓ(w,x𝑡, y𝑡) = −y𝑡 ⟨w,x𝑡⟩ ⋅ 𝕀[mistake on x𝑡]
= −min{y𝑡 ⟨w,x𝑡⟩ , 0}

𝐿(w) = −
1
𝑛

𝑛
∑
𝑡=1

(y𝑡 ⟨w,x𝑡⟩ ⋅ 𝕀[mistake on x𝑡])

Then, the gradient descent update (see section 8) is

w𝑡+1 = w𝑡 − 𝜂𝑡∇wℓ(w𝑡,x𝑡, y𝑡)
= w𝑡 + 𝜂𝑡y𝑡x𝑡 ⋅ 𝕀[mistake on x𝑡]

With step size 𝜂𝑡 = 1, we recover the update rule w𝑡+1 = w𝑡 + y𝑡x𝑡.

Remark 2.9. The solution to perceptron is not unique, since there are many possible lines
separating the data.

To pick the “best” line, we can maximize the margin 𝛾. This leads to support vector machines (see
sections 5 and 6).

Example 2.10 (XOR dataset). Consider the XOR function

x1 x2 x3 x4
0 1 0 1
0 0 1 1

y − + + +

There is no separating hyperplane.

Proof. Suppose there exist w and 𝑏 such that y(⟨x,w⟩ + 𝑏) > 0. Then,

𝑥1 = (0, 0), y1 = − ⟹ 𝑏 < 0
𝑥2 = (1, 0), y2 = + ⟹ 𝑤1 + 𝑏 > 0
𝑥3 = (0, 1), y3 = + ⟹ 𝑤1 + 𝑏 > 0 ⟹ 𝑤1 +𝑤2 + 2𝑏 > 0
𝑥4 = (1, 1), y4 = − ⟹ 𝑤1 +𝑤2 + 𝑏 < 0 ⟹ 𝑏 > 0

which is a contradiction.

This leads us to a theorem.

7

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Theorem 2.11
If there is no perfect separating hyperplane, then the perceptron algorithm cycles.

The proof is really complicated, and we will not cover it.

In this case, we can allow some wrong answers by setting a reasonable loss ℓ and regularizer reg:

minw �̂�[ℓ(y ̂𝑦) + reg(w)] s.t. ̂𝑦 ∶= ⟨x,w⟩ + 𝑏

We stop running perceptron when either:

• the maximum number of iterations is reached (i.e., we keep a constant maxiter),
• the maximum allowed runtime is reached,
• the training error stops changing, or
• the validation error stops decreasing.

If we have multiple classes (𝑐 of them), we can run perceptron as either one-vs.-all or one-vs.-one.

In one-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptron, for each class 𝑘, let it be positive, and all others be negative. We train
weights w𝑘 to get 𝑐 imbalanced perceptrons. Then, predict according to the highest score

̂y ∶= arg max
𝑘

⟨x,w𝑘⟩ .

In one-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptron, for each pair of classes (𝑘, 𝑙), let 𝑘 be positive, 𝑙 be negative, and ignore
all other classes. Then, train weights w𝑘,𝑙 for a total of (𝑐

2) balanced perceptrons. We predict by
majority vote

ŷ ∶= arg max
𝑘

∑
𝑙∶𝑙≠𝑘

⟨x,w𝑘,𝑙⟩ .

3 Linear Regression

Lecture 4
Jan 18

Problem 3.1 (regression)
Given training data (x𝑖, y𝑖) ∈ ℝ𝑑+𝑡, find 𝑓 ∶ 𝒳 → 𝒴 such that 𝑓(x𝑖) ≈ y𝑖.

The problem is that for finite training data, there are an infinite number of functions that exactly
hit each point.

Theorem 3.2 (exact interpolation is always possible)
For any finite training data (x𝑖, y𝑖) ∶ 𝑖 = 1,… , 𝑛 such that x𝑖 ≠ x𝑗 for all 𝑖 ≠ 𝑗, there exist
infinitely many functions 𝑓 ∶ ℝ𝑑 → ℝ𝑡 such that for all 𝑖, 𝑓(x𝑖) = y𝑖.

TODO: ...up to slide 14 (geometry of linear regression)

↑ Lectures 3 and 4 taken from slides and Neysa since I was sick ↑
Lecture 5
Jan 238

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Theorem 3.3 (Fermat’s necessary condition for optimality)
If w is a minimizer/maximizer of a differentiable function 𝑓 over an open set, then 𝑓 ′(w) = 0.

We can use this property to solve linear regression.

Recall the loss is Loss(W) = 1
𝑛‖WX − Y‖2

𝐹. Then, the derivative ∇W Loss(W) = 2
𝑛(WX − Y)X⊺.

We can derive the normal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equation:

2
𝑛(WX − Y)X⊺ = 0

WXX⊺ − YX⊺ = 0

WXX⊺ = YX⊺

W = YX⊺(XX⊺)−1

Once we find W, we can predict on unseen data X𝑡𝑒𝑠𝑡 with Ŷ𝑡𝑒𝑠𝑡 = WX𝑡𝑒𝑠𝑡.

Then,

Suppose X = [0 𝜖
1 1] and y = [1 −1].

Then, solving the linear least squares regression we get w = yX⊺(XX⊺)−1 = [−2/𝜖 1]. This is
chaotic!

Why does this happen? As 𝜖 → 0, two columns in X become almost linearly dependent with
incongruent corresponding 𝑦-values. This leads to a contradiction and an unstable w.

To solve this, we add a 𝜆‖W‖2
𝐹 term.

Definition 3.4 (ridge regression)
Take the linear regression and add a regularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization term:

min
W

1
𝑛‖WX − Y‖2

𝐹 + 𝜆‖W‖2
𝐹

This gives a new normal equation:

Loss(W) =
1
𝑛‖WX − Y‖2

𝐹 + 𝜆‖W‖2
𝐹

∇W Loss(W) =
2
𝑛(WX − Y)X⊺ + 2𝜆W

0 =
2
𝑛(WX − Y)X⊺ + 2𝜆W

W(XX⊺ + 𝑛𝜆𝐼) = YX⊺

W = YX⊺(XX⊺ + 𝑛𝜆𝐼)−1

9

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Proposition 3.5
XX⊺ + 𝑛𝜆𝐼 is far from rank-deficient for large 𝜆.

Proof. Recall from linear algebra that we can always take the singular value decomposition of any
matrix 𝑀 = 𝑈Σ𝑉 ⊺ where 𝑈 and 𝑉 are orthogonal and Σ is non-negative diagonal where the rank
is the number of non-zero entries in Σ.

Consider the SVD of X:

X = 𝑈Σ𝑉 ⊺

XX⊺ = 𝑈Σ𝑉 ⊺𝑉 Σ⊺𝑈⊺ = 𝑈Σ2𝑈⊺

XX⊺ + 𝑛𝜆𝐼 = 𝑈Σ2𝑈⊺ + 𝑈(𝑛𝜆𝐼)𝑈⊺

= 𝑈(Σ2 + 𝑛𝜆𝐼)𝑈⊺

The matrix Σ2 + 𝑛𝜆𝐼 is a diagonal matrix with strictly positive elements for sufficiently large 𝜆.
Therefore, XX⊺ + 𝑛𝜆𝐼 has full rank and thus no singular values.

Remark 3.6. Performing a ridge regularization is identical to augmenting the data.

Notice that
1
𝑛‖WX − Y‖2

𝐹 + 𝜆‖W‖2
𝐹 =

1
𝑛∥W[X

√
𝑛𝜆𝐼] − [Y 0]∥

2

𝐹

so if we augment X with
√
𝑛𝜆𝐼 and Y with 0, i.e., 𝑝 data points x𝑗 =

√
𝑛𝜆e𝑗 and y𝑗 = 0.

4 Logistic Regression

Return to the linear classification problem.

Recall that we took ŷ = sgn(⟨x,w⟩) where x = (x
1) and w = (w

𝑏) in ℝ𝑑+1.

How confident are we in our prediction ŷ? We can use the marginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmargin (or logitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogit) |⟨x,w⟩| (“how far away
is the point from the decision boundary?”).

The margin is unnormalized with respect to the data, so we cannot really interpret it until we
somehow cram it into [0, 1].

We can try directly learning hte confidence.

Let 𝒴 = {0, 1}. Consider confidence 𝑝(x;w) ∶= Pr[Y = 1 ∣ X = x]. Given independent (x𝑖, y𝑖):

Pr[Y1 = y1,… ,Y𝑛 = y𝑛 ∣ X1 = x1,… ,X𝑛 = x𝑛]

=
𝑛
∏
𝑖=1

Pr[Y𝑖 = y𝑖 ∣ X𝑖 = x𝑖]

=
𝑛
∏
𝑖=1

[𝑝(x𝑖;w)]y𝑖[1 − 𝑝(x𝑖;w)]1−y𝑖

and we can get our maximum likelihood estimation

10

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 4.1 (maximum likelihood estimation)

maxw

𝑛
∏
𝑖=1

[𝑝(x𝑖;w)]y𝑖[1 − 𝑝(x𝑖;w)]1−y𝑖

or equivalently the minimum minus log-likelihood

minw

𝑛
∑
𝑖=1

[−y𝑖 log 𝑝(x𝑖;w) − (1 − y𝑖) log(1 − 𝑝(x𝑖;w))]

Now, how do we define the probability 𝑝 based on w?

We will assume that the log of the odds ratio log probability of event
probability of no event = log 𝑝(x;w)

1−𝑝(x;w) = ⟨x,w⟩ is linear.

This leads us to the sigmoid transformation.

Definition 4.2 (sigmoid transformation)

𝑝(x;w) =
1

1 + exp(− ⟨x,w⟩)

If we return now to the MLE we defined earlier, we get

minw

𝑛
∑
𝑖=1

[−y𝑖 log 𝑝(x𝑖;w) − (1 − y𝑖) log(1 − 𝑝(x𝑖;w))]

=minw

𝑛
∑
𝑖=1

[−y𝑖 log
1

1 + exp(− ⟨x,w⟩)
− (1 − y𝑖)

exp{− ⟨x,w⟩}
1 + exp(− ⟨x,w⟩)

]

=minw

𝑛
∑
𝑖=1

[y𝑖 log(1 + exp(− ⟨x,w⟩)) + (1 − y𝑖) log(1 + exp(− ⟨x,w⟩)) + (1 − y𝑖) ⟨x,w⟩]

=minw

𝑛
∑
𝑖=1

log[1 + exp(− ⟨x𝑖,w⟩)] + (1 − y𝑖)(⟨x𝑖,w⟩)

If we redefine y′
𝑖 =

y𝑖+1
2 , i.e., y′ ∈ {±1}, then we get the logistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic loss

minw

𝑛
∑
𝑖=1

log[1 + exp(−y′
𝑖 ⟨x,w⟩)] (4.a)

There is no closed form solution for this problem, so we use the gradient descent algorithm (covered
in section 8).

Suppose we have found an optimal w. Then, we can set ̂𝑦 = 1 ⟺ 𝑝(x;w) = Pr[Y = 1 ∣ X = x] >
1
2 . The value of 𝑝(x;w) is our confidence.

Remember: All this is under the assumption that the log of the odds ratio is linear. Everything is
meaningless if it is not.

11

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Extending to the multiclass case Suppose we instead have y ∈ {1,… , 𝑐} and we need to learn
w𝑖 for each class. The sigmoid function becomes the softmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmax function

Pr[Y = 𝑘 ∣ X = x;W = [w1,… ,w𝑐]] =
exp ⟨x,w𝑘⟩

∑𝑐
𝑙=1 exp ⟨x,w𝑙⟩

This maps the real-valued vector x to a probability vector. Notice that the softmax values for each
class are all non-negative and sum to 1.

To train, we use the MLE again

To predict, pick the index of the highest softmax value

ŷ = arg max
𝑘

Pr[Y = 𝑘 ∣ X = x;W = [w1,… ,w𝑐]]

5 Hard-Margin Support Vector Machines

Lecture 6
Jan 25Recall that the perceptron is a feasibility program, i.e., a linear program with c⊺x = 0. It has

infinite solutions.

Naturally, some are much better than others. To take advantage of better algorithms, we can
instead maximize the separation.

Let 𝐻 be a the hyperplane defined by ⟨x,w⟩ + 𝑏 = 0. The separation (distance) between a point
x𝑖 and 𝐻 is the length of the projection of x𝑖 − x onto the normal vector w.

x x𝑖

x𝑖 − x

𝐻

projw(x𝑖 − x)
w

Simplfiying, we can express this as

⟨x𝑖 − x,w⟩
‖w‖2

=
⟨x𝑖,w⟩ − ⟨x,w⟩

‖w‖2
(linearity)

=
⟨x𝑖,w⟩ + 𝑏

‖w‖2
(x ∈ 𝐻 ⇔ ⟨x,w⟩ + 𝑏 = 0)

=
y𝑖 ̂𝑦𝑖
‖w‖2

We now have something to maximize.

12

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 5.1 (margin)
Given a hyperplane 𝐻 ∶= {x ∶ ⟨x,w⟩ + 𝑏 = 0} separating the data, the marginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmargin is the smallest
distance between a data point x𝑖 and 𝐻.

That is, min𝑖
y𝑖 ̂𝑦𝑖
‖w‖2

.

The goal is the maximize the margin across all possible hyperplanes:

max
w,𝑏

min
𝑖

y𝑖 ̂𝑦𝑖
‖w‖2

s.t. ∀𝑖, y𝑖 ̂𝑦𝑖 > 0 where ̂𝑦𝑖 ∶= ⟨x𝑖,w⟩ + 𝑏

We claim that we can arbitrarily scale the numerator. Let 𝑐 > 0. Then, (w, 𝑏) has the same loss
as (𝑐w, 𝑐𝑏) because ⟨x𝑖,𝑐w⟩+𝑐𝑏

‖𝑐w‖2
= 𝑐⟨x𝑖,w⟩+𝑐𝑏

𝑐‖w‖2
= ⟨x𝑖,w⟩+𝑏

‖w‖2
.

Therefore, we can equivalently write

max
w,𝑏

1
‖w‖2

s.t. min
𝑖

y𝑖 ̂𝑦𝑖 = 1 where ̂𝑦𝑖 ∶= ⟨x𝑖,w⟩ + 𝑏

or even better:
min
w,𝑏

‖w‖2
2 s.t. ∀𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) ≥ 1 (5.a)

Finally, consider the points that are closest to the boundary.

Definition 5.2
For the separating hyperplane 𝐻 = {⟨x𝑖,w⟩ + 𝑏 = 0}, the two supporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanes are the
parallel hyperplanes 𝐻+ ∶= {⟨x𝑖,w⟩ + 𝑏 = 1} and 𝐻− ∶= {⟨x𝑖,w⟩ + 𝑏 = −1} which represent
the margin boundaries.

A support vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vector is a data point x𝑖 ∈ 𝐻+ ∪𝐻−.

The support vectors are rare, but decisive because they reach the boundary of the constraint.

Explanation from the dual perspective Recall the SVM quadratic program

minw𝑏

1
2‖w‖2

2 s.t. ∀𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) ≥ 1

Introduce Lagrangian multipliers (dual variables) 𝜶 ∈ ℝ𝑛.

min
w,𝑏

max
𝜶>0

1
2‖w‖2

2 −∑
𝑖

𝛼𝑖[y𝑖(⟨x𝑖,w⟩ + 𝑏) − 1]

=min
w,𝑏

{
+∞ ∃𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) < 1(set 𝛼𝑖 as +∞)
1
2‖w‖2

2 ∀𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) ≥ 1(set all 𝛼𝑖 as 0)

=minw𝑏

1
2‖w‖2

2, 𝑠.𝑡.∀𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) ≥ 1

13

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Therefore, we only need to study the minimax problem. Assuming that the problem is convex
(which it is, outside the scope of the course), we can express this as

max
𝜶>0

Loss(𝛼)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
min
w,𝑏

1
2‖w‖2

2 −∑
𝑖

𝛼𝑖[y𝑖(⟨x𝑖,w⟩ + 𝑏) − 1]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Loss(w,𝑏,𝛼)

and take the derivative of the interior with respect to w and 𝑏:

𝜕Loss(w, 𝑏, 𝛼)
𝜕w = w −∑

𝑖
𝛼𝑖y𝑖x𝑖 = 0

w∗ = ∑
𝑖

𝛼𝑖y𝑖x𝑖

𝜕Loss(w, 𝑏, 𝛼)
𝜕𝑏 = −∑

𝑖
𝛼𝑖y𝑖 = 0

∑
𝑖

𝛼𝑖y𝑖 = 0

Substitute back into Loss(𝛼):

Loss(𝛼) ∶= min
w,𝑏

1
2‖w‖2

2 −∑
𝑖

𝛼[y𝑖(⟨x,w⟩ + 𝑏) − 1]

= min
w,𝑏

1
2‖w‖2

2 −⟨∑
𝑖

𝛼𝑖y𝑖x𝑖,w⟩− 𝑏∑
𝑖

𝛼𝑖y𝑖 +∑
𝑖

𝛼𝑖

=
1
2∥∑𝑖

𝛼𝑖y𝑖x𝑖∥
2

2
−⟨∑

𝑖
𝛼𝑖y𝑖x𝑖,∑

𝑖
𝛼𝑖y𝑖x𝑖⟩+∑

𝑖
𝛼𝑖 (s.t. ∑𝑖 𝛼𝑖y𝑖 = 0)

= −
1
2∥∑𝑖

𝛼𝑖y𝑖x𝑖∥
2

2
+∑

𝑖
𝛼𝑖 (s.t. ∑𝑖 𝛼𝑖y𝑖 = 0)

Therefore, we can write the dual problem as

min
𝜶≥0

−∑
𝑖

𝛼𝑖 +
1
2 ∑

𝑖
∑

𝑗
𝛼𝑖𝛼𝑗y𝑖y𝑗 ⟨x𝑖,x𝑗⟩ s.t. ∑

𝑖
𝛼𝑖y𝑖 = 0

We prefer this dual problem because it admits a very easy way to use a non-linear mapping x
𝜙
−→ 𝜙(x)

to transform non-linearly separable data x into linearly separable 𝜙(x). After applying the unknown
non-linear mapping, we get

min
𝜶≥0

−∑
𝑖

𝛼𝑖 +
1
2 ∑

𝑖
∑

𝑗
𝛼𝑖𝛼𝑗y𝑖y𝑗⟨𝜙(x𝑖), 𝜙(x𝑗)⟩ s.t. ∑

𝑖
𝛼𝑖y𝑖 = 0

which we can find without explicitly applying 𝜙 by using the “kernel trick” from section 7, writing
the inner product directly as a non-linear function.

6 Soft-Margin Support Vector Machines

Lecture 7
Jan 30

14

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

One of the drawbacks of the hard-margin SVM is that the data must be linearly separable. That
is, there must exist a non-zero margin between the data.

If we have a small number of outliers on the wrong side of the decision boundary, we can instead
just penalize it in the loss. We do this by relaxing the constraint in hard-margin SVM and including
failures in the objective function.

Definition 6.1 (hinge loss)
Given label y ∈ {−1,+1} and score ̂𝑦 ∶= ⟨x,w⟩ + 𝑏, let y ̂𝑦 be the confidence.

Define ℓhinge = (1 − y ̂𝑦)+ = {
1 − y ̂𝑦 y ̂𝑦 < 1
0 otherwise

In general, notate 𝑥+ to mean max{𝑥, 0}.

Now, we can formulate the soft-margin SVM as

min
w,𝑏

1
2‖w‖2

2 +𝐶 ⋅∑
𝑖
(1 − y𝑖 ̂𝑦𝑖)+ s.t. ̂𝑦𝑖 = ⟨x𝑖,w⟩ + 𝑏 (6.a)

(margin maximization, regularization hyperparameter, error penalty). Notice that the hard-margin
SVM is the limiting behaviour of the soft-margin SVM as 𝐶 → ∞.

Why do we use the hinge loss? Consider the probability that Y ≠ sgn(Ŷ)

Pr[Y ≠ sgn(Ŷ)] = Pr[YŶ ≤ 0] = 𝔼[𝕀[YŶ ≤ 0]] =∶ 𝔼[ℓ0−1(Y ̂Y)]

We want to minimize 𝔼[ℓ0−1(YŶ)]. Minimizing this value is hard because ℓ0−1 is discontinuous at
0 and has gradient 0 almost everywhere.

By Bayes’ rule, we can rewrite as 𝔼X 𝔼Y∣X[ℓ0−1(Y ̂Y)]. Then, we can minimize instead

𝜂(x) = arg min
̂𝑦∈ℝ

𝔼Y∣X=x[ℓ0−1(Y ̂𝑦)]

since setting Y = 𝜂(X).

Definition 6.2 (classification calibrated)
We say a loss function ℓ(y ̂𝑦) is classification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibrated if for all x,

ŷ(x) ∶= arg min
̂𝑦∈ℝ

𝔼Y∣X=x[ℓ(𝑌 ̂𝑦)]

has the same sign as the Bayes rule 𝜂(x).

Due to Bartlett, we have a helpful theorem

15

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Theorem 6.3 (characterization under convexity)
Any convex loss ℓ is classification calibrated if and only if ℓ is differentiable at 0 and ℓ′(0) < 0.

Corollary 6.4. A classifier that minimizes the expected hinge loss also minimizes the expected
0-1 loss.

This theorem is also one of the big reasons why the perceptron cannot generalize well.

Remark 6.5. The perceptron loss ℓ(y ̂𝑦) = −min{y ̂𝑦, 0} is not differentiable at 0, so it is not
classification calibrated and cannot generalize.

Generating the dual Recall the soft-margin SVM

min
w,𝑏

1
2‖w‖2

2 +𝐶 ⋅∑
𝑖
(1 − y𝑖(⟨x𝑖,w⟩ + 𝑏))+

Notice that we can write 𝐶 ⋅ (𝑡)+ = max{𝐶𝑡, 0} = max0≤𝛼≤𝐶 𝛼𝑡 to get

min
w,𝑏

max
0≤𝜶≤𝐶

1
2‖w‖2

2 +∑
𝑖

𝛼𝑖(1 − y𝑖(⟨x𝑖,w⟩ + 𝑏))

As before, swap min with max:

max
0≤𝜶≤𝐶

Loss(𝛼)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
min
w,𝑏

1
2‖w‖2

2 +∑
𝑖

𝛼𝑖(1 − y𝑖(⟨x𝑖,w⟩ + 𝑏))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Loss(w,𝑏,𝛼)

Now, set our optimality conditions

𝜕Loss(w, 𝑏, 𝛼)
𝜕w = w −∑

𝑖
𝛼𝑖y𝑖x𝑖 = 0

𝜕Loss(w, 𝑏, 𝛼)
𝜕𝑏 = −∑

𝑖
𝛼𝑖y𝑖 = 0

w = ∑
𝑖

𝛼𝑖y𝑖x𝑖 ∑
𝑖

𝛼𝑖y𝑖 = 0

and substitute into Loss(𝛼):

Loss(𝛼) ∶=
1
2‖w‖2

2 +∑
𝑖

𝛼𝑖(1 − y𝑖(⟨x𝑖,w⟩ + 𝑏))

=
1
2∥∑𝑖

𝛼𝑖y𝑖x𝑖∥
2

2
+∑

𝑖
𝛼𝑖 −⟨∑

𝑖
𝛼𝑖y𝑖x𝑖,∑

𝑖
𝛼𝑖y𝑖x𝑖⟩

= −
1
2∥∑𝑖

𝛼𝑖y𝑖x𝑖∥
2

2
+∑

𝑖
𝛼𝑖

Switching from max to min and expanding the norm, we get

min
0≤𝜶≤𝐶

−∑
𝑖

𝛼𝑖 +
1
2 ∑

𝑖
∑

𝑗
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 ⟨x𝑖,x𝑗⟩ s.t. ∑

𝑖
𝛼𝑖y𝑖 = 0 (6.b)

16

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

which is identical to the hard-margin SVM dual with an upper bound 𝐶 on 𝜶.
Lecture 8
Feb 1Suppose we solve the dual (eq. 6.b) with optimal solution 𝜶∗. Then,

w∗ = ∑
𝑖

𝛼∗
𝑖y𝑖x𝑖. (6.c)

If we have a point on 𝐻±1, i.e., y ̂𝑦 = 1, we can recover 𝑏∗ as y − ⟨x,w∗⟩.

Training by gradient descent Suppose we have a minimization problem minx 𝑓(x). Then, to
make a guess x better, set x ← x − 𝜂 ⋅ ∇x𝑓(x) for some learning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning rate 𝜂 > 0.

Given the problem

min
w,𝑏

1
2𝜆‖w‖2

2 +𝐶 ∑
𝑖

ℓ(y𝑖 ̂𝑦𝑖) where ̂𝑦𝑖 = ⟨x𝑖,w,x𝑖,w⟩ + 𝑏

with loss function ℓ, the gradient descent steps are

w ← w − 𝜂 ⋅ ∇w(
1
2𝜆‖w‖2

2 +𝐶 ∑
𝑖

ℓ(y𝑖 ̂𝑦𝑖))

= w − 𝜂[
w
𝜆 + 𝐶 ∑

𝑖
ℓ′(y𝑖 ̂𝑦𝑖)y𝑖x𝑖]

𝑏 ← 𝑏 − 𝜂 ⋅ ∇𝑏(
1
2𝜆‖w‖2

2 +𝐶 ∑
𝑖

ℓ(y𝑖 ̂𝑦𝑖))

= 𝑏 − 𝜂[𝐶 ∑
𝑖

ℓ′(y𝑖 ̂𝑦𝑖)y𝑖]

because ∇wℓ(y𝑖 ̂𝑦𝑖) = ℓ′(y𝑖 ̂𝑦𝑖)⋅y𝑖∇w(̂𝑦𝑖) = ℓ′(y𝑖 ̂𝑦𝑖)y𝑖x𝑖 and ∇𝑏ℓ(y𝑖 ̂𝑦𝑖) = ℓ′(y𝑖 ̂𝑦𝑖)⋅y𝑖∇𝑏(̂𝑦𝑖) = ℓ′(y𝑖 ̂𝑦𝑖)⋅y𝑖.

If ℓ is hinge loss, we define the derivative ℓ′(𝑡) = {
−1 𝑡 ≤ 1
0 𝑡 > 1

.

If ℓ is perceptron loss, we define ℓ′(𝑡) = {
−1 𝑡 ≤ 0
0 𝑡 > 1

.

All other common loss functions are easily differentiable.

7 Reproducing Kernels

We have dealt with data that is perfectly linearly separable (hard-margin SVM) and mostly linearly
separable (soft-margin SVM).

Problem 7.1
How can we use our existing techniques to classify a fully non-linearly separable dataset?

In the linear classifier, we used an affine function ⟨w,x⟩ + 𝑏. Now, we define a quadratic classifier.

17

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 7.2 (quadratic classifier)
A function 𝑓 ∶ ℝ𝑑 → ℝ𝑑 of the form 𝑓(x) = ⟨x, 𝑄x⟩ +

√
2 ⟨x,p⟩ + 𝑏 where the weights to be

learned are 𝑄 ∈ ℝ𝑑×𝑑, p ∈ ℝ𝑑, and 𝑏 ∈ ℝ.

Recall from linear algebra that for all 𝐴, 𝐵, 𝐶, ⟨𝐴𝐵,𝐶⟩ = ⟨𝐵,𝐴⊺𝐶⟩ and ⟨𝐴,𝐵𝐶⟩ = ⟨𝐴𝐵⊺, 𝐶⟩.

Definition 7.3 (matrix vectorization)
Given a matrix A ∈ ℝ𝑚×𝑛, let ⃗⃗ ⃗⃗ ⃗⃗A⃗ ∈ ℝ𝑚𝑛 be its vectorization. That is,

A =
⎡
⎢
⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥
⎥
⎦

⟹ ⃗⃗⃗⃗⃗⃗A⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑎11
𝑎12
⋮

𝑎1𝑛
⋮

𝑎𝑚𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Then, we can write the quadratic classifier as:

𝑓(x) = ⟨x, 𝑄x⟩ +
√
2 ⟨x,p⟩ + 𝑏

= ⟨xx⊺, 𝑄⟩ + ⟨
√
2x,p⟩ + 𝑏

= ⟨⎡
⎢
⎣

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗xx⊺
√
2x
1

⎤
⎥
⎦
,⎡⎢
⎣

⃗⃗ ⃗⃗ ⃗⃗𝑄
p
𝑏

⎤
⎥
⎦
⟩

If we write 𝜙(x) = (⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗xx⊺,
√
2x, 1)⊺ and w = (⃗⃗ ⃗⃗ ⃗⃗𝑄,p, 𝑏)⊺, then we can write 𝑓 as

𝑓(x) = ⟨𝜙(x),w⟩

but this really blows up the dimension to ℝ𝑑2+𝑑+1. Recall that in the dual forms of SVM, all we
need is to know the inner product ⟨𝜙(x), 𝜙(w)⟩. With our new 𝜙, we get

𝑘(x, z) ∶= ⟨𝜙(x), 𝜙(z)⟩ = ⟨⎡
⎢
⎣

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗xx⊺
√
2x
1

⎤
⎥
⎦
,⎡⎢
⎣

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗zz⊺
√
2z
1

⎤
⎥
⎦
⟩

= ⟨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗xx⊺, ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗zz⊺⟩ + ⟨
√
2x,

√
2z⟩ + 1

= ⟨x, z⟩2 + 2 ⟨x, z⟩ + 1
= (⟨x, z⟩ + 1)2

This process is easily reproducable for a given 𝜙. What about the other direction?

Definition 7.4 (reproducing kernel)
We call 𝑘 ∶ 𝒳 × 𝒳 → ℝ a reproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernel if there exists some 𝜙 ∶ 𝒳 → ℋ so that
⟨𝜙(x), 𝜙(z)⟩ = 𝑘(x, z).

18

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Remark 7.5. When such a kernel exists, it may not be unique.

For example, the kernels 𝜙(x) = [𝑥2
1,
√
2𝑥1𝑥2, 𝑥2

2] ∈ ℝ3 and 𝜓(x) = [𝑥2
1, 𝑥1𝑥2, 𝑥1𝑥2, 𝑥2

2] ∈ ℝ4

have the same inner product ⟨𝜙(x), 𝜙(z)⟩ = ⟨𝜓(x), 𝜓(z)⟩.

Theorem 7.6 (Mercer’s theorem)
𝑘 ∶ 𝒳×𝒳 → ℝ is a kernel if and only if for any 𝑛 ∈ ℕ and any x1,… ,x𝑛 ∈ 𝒳, the kernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrix
𝐾𝑖𝑗 ∶= 𝑘(x𝑖,x𝑗) is symmetric and positive semi-definite.

Recall from linear algebra: 𝐾 is symmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetric if 𝐾𝑖𝑗 = 𝐾𝑗𝑖 for all indices, and positive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definite if
⟨𝜶,𝐾𝜶⟩ ≥ 0 for all vectors 𝜶.

The proof is extremely convoluted and well beyond the scope of the course.

Example 7.7. The following are kernels:

• the polynomial kernel 𝑘(x, z) = (⟨x, z⟩ + 1)𝑝 for hyperparameter 𝑝,

• the Gaussian kernel 𝑘(x, z) = exp(−‖x − z‖2
2/𝜎) for hyperparameter 𝜎, and

• the Laplace kernel 𝑘(x, z) = exp(−‖x − z‖2/𝜎) for hyperparameter 𝜎

Now, we can substitute our expression for the inner product to eqs. 6.a and 6.b, the primal and
dual of the soft-margin SVM:

min
w,𝑏

1
2‖w‖2

2 +𝐶 ⋅∑
𝑖
(1 − y𝑖 ̂𝑦𝑖)+ s.t. ̂𝑦𝑖 = ⟨𝜙(x𝑖),w⟩

min
0≤𝜶≤𝐶

−∑
𝑖

𝛼𝑖 +
1
2 ∑

𝑖
∑

𝑗
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(x𝑖,x𝑗) s.t. ∑

𝑖
𝛼𝑖y𝑖 = 0

Once we solve 𝜶∗, we can try to recover w∗ as in eq. 6.c

w∗ = ∑𝛼∗
𝑖y𝑖𝜙(x𝑖)

but this will not work since we do not know 𝜙 explicitly. Instead, we only need to compute the
score function

𝑓(x) ∶= ⟨𝜙(x),w∗⟩

= ⟨𝜙(x),∑𝛼∗
𝑖y𝑖𝜙(x𝑖)⟩

= ∑𝛼∗
𝑖y𝑖 ⟨𝜙(x), 𝜙(x𝑖)⟩

= ∑𝛼∗
𝑖y𝑖𝑘(x,x𝑖)

and return sgn(𝑓(x)).

19

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

8 Gradient Descent

Lecture 9
Feb 6All of our machine learning models so far have been expressed as optimization problems (eqs. 4.a,

5.a and 6.a).

Remark 8.1. Optimization problems are identical up to constants. That is,

minx 𝑓(x) = minx 𝑐 ⋅ 𝑓(𝑥)

if 𝑐 has no x-dependence.

We can consider now a generic optimization problem minx 𝑓(x).

Assume that 𝑓(x) is differentiable with gradient ∇x𝑓(x).

Notation. Given the generic optimization problem, write 𝑓∗ ∶= minx 𝑓(𝑥) for the optimal
value and 𝑥∗ ∶= arg minx 𝑓(𝑥) for the optimal parameter.

Then, we can define gradient descent.

Definition 8.2 (gradient descent)
Choose an initial point x(0) ∈ ℝ𝑑 and repeat

𝑥(𝑘) = 𝑥(𝑘−1) − 𝑡⏟
step size

⋅∇𝑓(𝑥(𝑘−1))

𝑘 = 1, 2,… for some step size 𝑡 > 0 until satisfied.

Intuitively, we are walking “down” the function by checking for a downwards slope and taking a
𝑡-sized step down that slope.

For example, the perceptron (section 2) with optimization problem

minw 𝑓(w) = minw −
1
𝑛 ∑

𝑖
y𝑖 ⟨w,x𝑖⟩ 𝕀[mistake on x𝑖]

with gradient
∇w𝑓(w) = −

1
𝑛 ∑

𝑖
y𝑖x𝑖𝕀[mistake on x𝑖]

leads us to the gradient descent update

w ← w + 𝑡[
1
𝑛 ∑

𝑖
y𝑖x𝑖𝕀[mistake on x𝑖]]

This is very expensive, since we need to iterate over our entire training data for each update. Since
the gradient is just a sample mean, we can make an estimation

̃∇w𝑓(w) = y𝐼x𝐼𝕀[mistake on x𝐼]

20

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

after picking a random index 𝐼 ∈R {1,… , 𝑛}. This is an unbiased estimator of the sample mean.
Doing this, i.e.,

w ← w + 𝑡y𝐼x𝐼𝕀[mistake on x𝐼]

is called stochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descent. Since it is (very) inaccurate, it will take many more iterations
to converge.

For a more complex example, consider the soft-margin SVM (section 6) with optimization problem

min
w,𝑏

1
2‖w‖2

2 +𝐶 ∑
𝑖

ℓhinge(1 − y𝑖 ̂𝑦𝑖) s.t. ̂𝑦𝑖 = ⟨x𝑖,w⟩ + 𝑏

We calculate two gradients ∇w and ∇𝑏 to get

w ← w − 𝑡[w +𝐶 ∑
𝑖

ℓ′
hinge(y𝑖 ̂𝑦𝑖)y𝑖x𝑖]

𝑏 ← 𝑏 − 𝑡[𝐶 ∑
𝑖

ℓ′
hinge(y𝑖 ̂𝑦𝑖)y𝑖]

Motivating gradient descent Suppose we take the Taylor expansion of 𝑓 at the current iterate
x. Then, we can say

𝑓(y) ≈ 𝑓(x) + ∇𝑓(x)⊺(y − x) +
1
2𝑡‖y − x‖2

2

and take the minimization with respect to y on both sides

miny 𝑓(y) ≈ miny
⎡
⎢
⎣
𝑓(x) + ∇𝑓(x)⊺(y − x) +

1
2𝑡‖y − x‖2

2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑔(y)

⎤
⎥
⎦

so that we can write

𝜕𝑔
𝜕y = 0 +∇𝑓(x) +

1
𝑡 (𝑦 − 𝑥) = 0

𝑡∇𝑓(x) + y − x = 0
y = x − 𝑡∇𝑓(x)

which is our gradient descent formula.

Applying gradient descent We cannot set the step size too large (it will diverge) or too small
(it will be too slow). How do we choose the step size?

Definition 8.3 (convexity)
A function 𝑓 is convexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvex if 𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊺(y − x) for any x,y ∈ ℝ𝑑.

We also want to characterize the smoothness.

21

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 8.4 (Lipschitz continuity)
Given convex and differentiable 𝑓, we say 𝑓 is 𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth or 𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous for 𝐿 > 0 if
the matrix

𝐿𝐼 −∇2𝑓(x)

is positive semi-definite for every 𝑥 (we write 𝐿𝐼 ⪰ ∇2𝑓(𝑥)).

Then, we can characterize the convergence rate.

Theorem 8.5 (convergence rate for convex case)
Gradient descent with fixed step size 𝑡 ≤ 1/𝐿 satisfies

𝑓(x(𝑘)) − 𝑓∗ ≤
∥x(0) − x∗∥22

2𝑡𝑘

We say gradient descent has convergence rate 𝒪(1/𝑘) (i.e., a bound of 𝑓(x(𝑘))−𝑓(x∗) ≤ 𝜀 takes
𝒪(1/𝜀) iterations).

Proof. Recall the mean value theorem allows us to write the Lagrangian

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊺(y − x) +
1
2(y − x)⊺∇2𝑓(a)(y − x)

where a is on the line between x and y. Then, since 𝐿𝐼 ⪰ ∇2𝑓(a), we have

𝑓(y) ≤ 𝑓(x) + ∇𝑓(x)⊺(y − x) +
𝐿
2 (y − x)⊺(y − x)

≤ 𝑓(x) + ∇𝑓(x)⊺(y − x) +
𝐿
2 ‖y − x‖2

2

Now, plug in y = x+ ∶= x − 𝑡∇𝑓(x) (i.e., do the gradient update) to get

𝑓(x+) ≤ 𝑓(x) + ∇𝑓(x)⊺(x − 𝑡∇𝑓(x) − x) +
𝐿
2 ‖x − 𝑡(∇𝑓(x)) − x‖2

2

= 𝑓(x) − 𝑡‖∇𝑓(x)‖2
2 +

𝐿𝑡2

2 ‖∇𝑓(x)‖2
2

= 𝑓(x) − (1 −
1
2𝐿𝑡)𝑡‖∇𝑓(x)‖2

2

Since 𝑡 ≤ 1
𝐿 , we have (1 − 1

2𝐿𝑡) ≥
1
2 and we can conclude that

𝑓(x+) ≤ 𝑓(x) −
1
2𝑡‖∇𝑓(x)‖2

2 (⋆)

which means that we have decreased the function value by at least 𝑡
2‖∇𝑓(x)‖2

2.

Recall that 𝑓 is convex. Then, by definition, 𝑓(x∗) ≥ 𝑓(x) + ∇𝑓(x)⊺(x∗ − x). Equivalently,

𝑓(x) ≤ 𝑓(x∗) + ∇𝑓(x)⊺(x − x∗)

22

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

and by (⋆) we can say

𝑓(x+) ≤ 𝑓(x∗) + ∇𝑓(x)⊺(x − x∗) −
𝑡
2‖∇𝑓(x)‖2

2

𝑓(x+) − 𝑓(x∗) ≤ ∇𝑓(x)⊺(x − x∗) −
𝑡
2‖∇𝑓(x)‖2

2

=
1
2𝑡(2𝑡∇𝑓(x)⊺(x − x∗) − 𝑡2‖∇𝑓(x)‖2

2)

=
1
2𝑡((2𝑡∇𝑓(x)⊺(x − x∗) − 𝑡2‖∇𝑓(x)‖2

2 − ‖x − x∗‖2
2) + ‖x − x∗‖2

2)

=
1
2𝑡(−‖x − 𝑡∇𝑓(x) − x∗‖ + ‖x − x∗‖2

2)

=
1
2𝑡(‖x − x∗‖2

2 − ‖x+ − x∗‖2
2)

If we define x+ ∶= x(𝑖) and x ∶= x(𝑖−1), we have

𝑓(x(𝑖)) − 𝑓(x∗) ≤
1
2𝑡(∥x

(𝑖−1) − x∗∥22 − ∥x(𝑖) − x∗∥22)
𝑘

∑
𝑖=1

[𝑓(x(𝑖)) − 𝑓(x∗)] ≤
𝑘

∑
𝑖=1

1
2𝑡(∥x

(𝑖−1) − x∗∥22 − ∥x(𝑖) − x∗∥22)

𝑘
∑
𝑖=1

𝑓(x(𝑖)) − 𝑘𝑓(x∗) ≤
1
2𝑡(∥x

(0) − x∗∥22 − ∥x(𝑘) − x∗∥22)

≤
1
2𝑡(∥x

(0) − x∗∥22)

1
𝑘

𝑘
∑
𝑖=1

𝑓(x(𝑖)) − 𝑓(x∗) ≤
1
2𝑡𝑘(∥x

(0) − x∗∥22)

Finally, because each step decreases, we must have 𝑓(x(𝑘)) ≤ 1
𝑘 ∑𝑘

𝑖=1 𝑓(x
(𝑖)). That is,

𝑓(x(𝑘)) − 𝑓∗ ≤
1
𝑘

𝑘
∑
𝑖=1

𝑓(x(𝑖)) − 𝑓(x∗) ≤
1
2𝑡𝑘(∥x

(0) − x∗∥22)

as desired.

Lecture 10
Feb 8We have a stronger sense of convexity that gives a stronger convergence rate.

Definition 8.6 (𝑚-strong convexity)
For some 𝑚 > 0, 𝑓 is 𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex if 𝑓(x)−𝑚‖x‖2

2 is convex. We write 𝐿𝐼 ⪰ ∇2𝑓(x) ⪰ 𝑚𝐼.

Theorem 8.7 (convergence rate for strong convexity)
Let 𝑓 be differentiable, 𝑚-strong convex, and 𝐿-smooth. Then, gradient descent with fixed
step size 𝑡 ≤ 2/(𝑚 + 𝐿) satisfies

𝑓(x(𝑘)) − 𝑓∗ ≤ 𝛾𝑘𝐿
2 ∥x

(0) − x∗∥22

where 0 < 𝛾 < 1.

23

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

The rate here is 𝒪(𝛾𝑘) which is exponentially fast. That is, a bound 𝑓(x(𝑘)) − 𝑓(x∗) < 𝜀 can be
achieved using only 𝒪(log1/𝛾(1/𝜀)) iterations, much better than before.

Alternatively, we can make a weaker assumption and ask for a weaker result. In a non-convex
function, there are (potentially many) local minima. Instead of asking for small ∥𝑓(x(𝑘)) − 𝑓(x∗)∥2,
we only need ‖∇𝑓(x)‖.

Theorem 8.8 (convergence rate for non-convex case)
Suppose 𝑓 is differentiable, 𝐿-smooth, and non-convex. Then, gradient descent with fixed step
size 𝑡 ≤ 1/𝐿 satisfies

min
𝑖=0,…,𝑘

∥∇𝑓(x(𝑖))∥2 ≤ √2(𝑓(x(0)) − 𝑓∗)
𝑡(𝑘 + 1)

The rate 𝒪(1/
√
𝑘) for finding stationary points cannot be improved by any deterministic algorithm.

However, all these require that the gradient ∇𝑓(x) is known to us.

Stochastic gradient descent Recall that we introduced the case for perceptron where we update
using one data point instead of the full dataset.

Consider some decomposable optimization with unreasonably large 𝑛

minw
1
𝑛 ∑

𝑖
𝑓𝑖(w)

where we assume ∇𝑓𝑖(w) exists for all 𝑖. Then, the two gradient descent updates

w ← w − 𝑡
1
𝑛 ∑

𝑖
∇𝑓𝑖(w)

w ← w − 𝑡 ⋅ ∇𝑓𝐼(w)

(where 𝐼 is a uniformly random index) have the same expected value. Notice that the “full” gradient
descent will have true time complexity 𝒪(𝑛/𝜀) because each step takes 𝒪(𝑛) time to calculate.

The stochastic version takes just 𝒪(1/𝜀2) time.

To summarize these theorems:

Case Hessian assumption Iterations for 𝜀 error Step size
Non-convex 𝐿𝐼 ⪰ ∇2𝑓(x) 𝒪(1/𝜀2) 𝑡 ≤ 1/𝐿

Convex 𝐿𝐼 ⪰ ∇2𝑓(x) 𝒪(1/𝜀) 𝑡 ≤ 1/𝐿
𝑚-strong convex 𝐿𝐼 ⪰ ∇2𝑓(x) ⪰ 𝑚𝐼 𝒪(log(1/𝜀)) 𝑡 ≤ 2/(𝑚 + 𝐿)

Stochastic convex 𝐿𝐼 ⪰ ∇2𝑓(x) 𝒪(1/𝜀2) 𝑡 = 1/𝑘

In general, we will want to use stochastic gradient descent when 𝑛 > 𝐶1/𝜀 and full gradient descent
when 𝑛 < 𝐶2/𝜀 for some constants 𝐶1, 𝐶2.

24

Chapter 2

Neural Networks

We can finally progress from 30- to 60-year old algorithms to stuff people actually use now. Recall
the XOR dataset (ex. 2.10). We showed that it is not linearly separable, so it cannot be learned
by perceptron (thm. 2.11).

One way to deal with this is to use a richer model (e.g., a quadratic classifier) or to lift the data
through some feature map 𝜙. These two approaches are equivalent due to reproducing kernels.

A neural network tries to learn the feature map and the linear classifier simultaneously.

9 Multilayer Perceptron

We can set up the following layers:

• input layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layer x ∈ ℝ2

• linear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layer z = Ux + c for learnable parameters U ∈ ℝ2×2 and c ∈ ℝ2

• hidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layer h = 𝜎(z) for some non-linear 𝜎
• prediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layer ̂𝑦 = ⟨h,w⟩ + 𝑏 for learnable parameters w ∈ ℝ2 and 𝑏 ∈ ℝ
• output layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layer sgn(̂𝑦) or sigmoid(̂𝑦)

In total, we need to learn U, c, w, and 𝑏 (here, 9 parameters).

Example 9.1. XOR dataset is learnable with a 2-layer neural network. Let

U = [1 1
1 1], c = [0

−1], w = [2
−4], 𝑏 = −1

and let 𝜎(𝑡) = max{𝑡, 0} (the ReLU activation function).

Then, sgn(⟨𝜎(Ux + c),w⟩ + 𝑏) works.

To do a multi-class classification, simply have a bunch of ̂𝑦’s in a vector ̂y = Wh + b and make a
prediction vector ̂p = softmax(̂y).

25

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Remark 9.2. The hidden layer 𝜎 must be non-linear. Otherwise, the composition of linear
layers is just a linear layer and we gain nothing.

There are a lot of options for 𝜎:

• relu(𝑡) = 𝑡+
• elu(𝑡) = 𝑡+ + 𝑡−(exp(𝑡) − 1)
• sgm(𝑡) = 1/(1 + exp(−𝑡))
• tanh(𝑡) = 1 − 2sgm(𝑡)

We can also stack several layers together, repeating the pattern of linear layer + non-linear layer.

To train, we need a loss function ℓ and a dataset 𝒟 = {(x𝑖, y𝑖)}

Notation. Write [ℓ ∘ 𝑓](x𝑖, y𝑖,w) to mean ℓ[𝑓(x𝑖,w), y𝑖].

We can express the neural network as a minimization problem

minw
1
𝑛 ∑

𝑖
[ℓ ∘ 𝑓](x𝑖, y𝑖,w) (9.a)

which gives the gradient descent rule

w ← w − 𝜂 ⋅
1
𝑛 ∑

𝑖
∇[ℓ ∘ 𝑓](x𝑖, y𝑖,w)

for learning rate 𝜂. This requires a full pass over the dataset for each step.

Instead of doing ordinary stochastic gradient descent, we can minibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatch by picking a random subset
𝐵 ⊆ {1,… , 𝑛}:

w ← w − 𝜂 ⋅
1
|𝐵|

∑
𝑖∈𝐵

∇[ℓ ∘ 𝑓](x𝑖, y𝑖,w)

which trades off variance and computation cost.
Lecture 11
Feb 13The learning rate has diminishing returns. Instead of keeping a constant 𝜂, we can paramaterize

𝜂𝑡 and say something like

𝜂𝑡 =
⎧{
⎨{⎩

𝜂0 𝑡 ≤ 𝑡0
𝜂0/10 𝑡0 < 𝑡 ≤ 𝑡1
𝜂0/100 𝑡1 < 𝑡

for an initial 𝜂0 and specific epochs 𝑡0, 𝑡1. Alterntaively, we can use sublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decay 𝜂𝑡 = 𝜂0/(1+𝑐𝑡)
or 𝜂𝑡 = 𝜂0/

√
1 + 𝑐𝑡 for some constant 𝑐.

We need to calculate a lot of partial derivatives with respect to matrices.

26

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 9.3
Let 𝑦(X) ∈ ℝ and X = [𝑋𝑖𝑗] ∈ ℝ𝑚×𝑛. Then, we define the partial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. X as

𝜕𝑦
𝜕X = [

𝜕𝑦
𝜕𝑋𝑖𝑗

] =
⎡
⎢
⎢
⎢
⎣

𝜕𝑦
𝜕𝑋11

𝜕𝑦
𝜕𝑋12

⋯ 𝜕𝑦
𝜕𝑋1𝑛

𝜕𝑦
𝜕𝑋21

𝜕𝑦
𝜕𝑋22

⋯ 𝜕𝑦
𝜕𝑋2𝑛

⋮ ⋮ ⋮
𝜕𝑦

𝜕𝑋𝑚1

𝜕𝑦
𝜕𝑋𝑚2

⋯ 𝜕𝑦
𝜕𝑋𝑚𝑛

⎤
⎥
⎥
⎥
⎦

∈ ℝ𝑚×𝑛

as a matrix.

The best way to do this is to just “guess” analogous to scalar calculus, then check that the dimension
is right (i.e., dim 𝜕𝑦

𝜕X = dim X)

Consider the forward pass for NN width 𝑘 and output dimension 𝑐:

x = input x ∈ ℝ𝑑×1

z = Wx + b1 W ∈ ℝ𝑘×𝑑, z,b1 ∈ ℝ𝑘×1

h = ReLU(z) h ∈ ℝ𝑘×1

𝜽 = Uh + b2 U ∈ ℝ𝑐×𝑘, 𝜽,b2 ∈ ℝ𝑐×1

𝐽 =
1
2‖𝜽 − y‖2

2 y ∈ ℝ𝑐×1, 𝐽 ∈ ℝ

Now, we can apply the chain rule to find our desired gradients:

𝜕𝐽
𝜕𝜽 = 𝜽 − y

𝜕𝐽
𝜕U =

𝜕𝐽
𝜕𝜽 ∘

𝜕𝜽
𝜕U = (𝜽 − y)⏟

𝑐×1

h⊺⏟
1×𝑘

(to get 𝑐 × 𝑘)

𝜕𝐽
𝜕b2

=
𝜕𝐽
𝜕𝜽 ∘

𝜕𝜽
𝜕b2

= 𝜽 − y⏟
𝑐×1

(already has right dimensions)

𝜕𝐽
𝜕h =

𝜕𝐽
𝜕𝜽 ∘

𝜕𝜽
𝜕h = U⊺⏟

𝑘×𝑐
(𝜽 − y)⏟

𝑐×1

(to get 𝑘 × 1)

𝜕𝐽
𝜕z =

𝜕𝐽
𝜕h ∘

𝜕h
𝜕z = U⊺(𝜽 − y)⏟⏟⏟⏟⏟

𝑘×1

⊙ ReLU′(z)⏟⏟⏟⏟⏟
𝑘×1

(using ⊙ to keep the dimension)

𝜕𝐽
𝜕W =

𝜕𝐽
𝜕z ∘

𝜕z
𝜕W = (U⊺(𝜽 − y) ⊙ ReLU′(z))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘×1

x⊺⏟
1×𝑑

(to get 𝑘 × 𝑑)

𝜕𝐽
𝜕b1

=
𝜕𝐽
𝜕z ∘

𝜕z
𝜕b1

= (U⊺(𝜽 − y) ⊙ ReLU′(z))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘×1

(already has right dimensions)

where ⊙ is the Hadamard (element-wise) product, i.e.,

⎡
⎢
⎢
⎣

𝑎1
𝑎2
⋮
𝑎𝑑

⎤
⎥
⎥
⎦

⊙
⎡
⎢
⎢
⎣

𝑏1
𝑏2
⋮
𝑏𝑑

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑎1𝑏1
𝑎2𝑏2
⋮

𝑎𝑑𝑏𝑑

⎤
⎥
⎥
⎦

27

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

for two matrices of identical dimension.

Existing frameworks like TensorFlow will automatically do this.

Theorem 9.4 (universal approximation theorem by 2-layer NNs)
For any continuous function 𝑓 ∶ ℝ𝑑 → ℝ𝑐 and any 𝜀 > 0, there exists 𝑘 ∈ ℕ, W ∈ ℝ𝑘×𝑑,
b ∈ ℝ𝑘, and U ∈ ℝ𝑐×𝑘 such that

sup
x

‖𝑓(x) − 𝑔(x)‖2 < 𝜀

where 𝑔(x) = U(𝜎(Wx + b)) and 𝜎 is element-wise ReLU.

Informally, a 2-layer NN can approximate any continuous function arbitrarily closely provided it is
wide enough with a large number of parameters.

However, it’s not very efficient. In the worst case, a 2-layer MLP needs 𝑘 = exp(1/𝜀) but a 3-layer
MLP can get away with 𝑘 = poly(1/𝜀). Deeper networks will have even smaller dimensionality
requirements.

To help avoid overfitting, we can apply dropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropout. For each minibatch, randomly select some hidden
neurons to be active with probability 𝑞 (and pretend the rest of them don’t exist). Then, each
training minibatch gets a “different” network, so it’s harder for neurons to “collude” to get over-
fitting. To make sure that dropout does not affect the overall expectation, multiply each h by 1/𝑞
during the back-propagation.

We can also do batch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalization to ensure that the mean and variance of all the minibatches
are the same.

10 Convolutional Neural Networks

Lecture 12
Feb 15An MLP has a lot of parameters to learn. Instead of densely connecting every node in the input

layer to the hidden layer, only connect some of them (i.e., make W sparse).

Also, to reduce the number of parameters even more, make a bunch of the weights the same.
Following a certain pattern, we get a convolution. These are useful for image processing/classifica-
tion/segmentation but not for NLP.

The layers of CNN are roughly:

• feature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extraction: a series of convolutions + ReLUs. We use a sliding window to reduce
the dimensions of the input while poolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpooling inputs together to increase width to make up for
decreased size.

• vectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorization: convert the matrix into a vector
• classification: a fully connected layer (i.e., MLP)
• probabilistic distribution: a softmax activation function

To process an image, split into sepraate channels for RGB values, then treat as a matrix of values.
We will learn a kernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernel for the convolution with stochastic gradient descent.

28

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Example 10.1. To calculate the convolution

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∗ ⎡⎢
⎣

1 0 1
0 1 0
1 0 1

⎤⎥
⎦

= ⎡⎢
⎣

4 3 4
2 4 3
2 3 4

⎤⎥
⎦

we can find each coloured value by taking the tensor inner product (i.e., the inner product of
the vectorization) of the kernel with the kernel-sized region around a value:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Convolutions have been shown to represent human visual cognition. Traditional image processing
also uses convolutions. For example, edge detection and Gaussian smoothing.

For multi-channel input, “stack” the channels and use a “cube” (tensor) kernel. We can also apply
a bias term 𝑏 ∈ ℝ to the output tensor (add 𝑏 to every element).

In a CNN layer, we increase channels to account for decreased resolution. For example, with 3
RGB input channels, we might learn 5 different 3 × 3 × 3 kernels. Then, we will end up with 5
output channels.

We can also control the size of the step taken during convolution. Instead of always moving 1-left
and 1-down, we can have a larger stridestridestridestridestridestridestridestridestridestridestridestridestridestridestridestridestride. However, we want overlap between windows, so always
make sure that the stride is less than the kernel size. We can also control the paddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpadding, adding 0s
as necessary to keep boundary information.

Suppose we have input size
typical 𝑚 = 𝑛 = 224

⏞𝑚×𝑛×𝑐𝑖𝑛, kernel size
typical 𝑎 = 𝑏 = 5

⏞𝑎× 𝑏×𝑐𝑖𝑛, stride
typical 𝑠 = 𝑡 = 1, 2

⏞𝑠× 𝑡, and padding
typical 𝑝 = 𝑞

⏞𝑝 × 𝑞 so
that the preprocesssed input looks like

𝑚
+

2𝑝

𝑛 + 2𝑞

𝑚

𝑛

𝑝
𝑞

29

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Then, the output size will be

⌊1 +
𝑚+ 2𝑝 − 𝑎

𝑠 ⌋ × ⌊1 +
𝑛 + 2𝑞 − 𝑏

𝑡 ⌋

If we want the input and output to have the “same” size, set

𝑝 = ⌈
𝑚(𝑠 − 𝑎) + 𝑎 − 𝑠

2 ⌉ and 𝑞 = ⌈
𝑛(𝑡 − 1) + 𝑏 − 𝑡

2 ⌉

30

List of Named Results

2.2 Theorem (linear duality) . 4
2.8 Theorem (convergence theorem) . 6
3.2 Theorem (exact interpolation is always possible) 8
3.3 Theorem (Fermat’s necessary condition for optimality) 9
6.3 Theorem (characterization under convexity) . 16
7.6 Theorem (Mercer’s theorem) . 19
8.5 Theorem (convergence rate for convex case) . 22
8.7 Theorem (convergence rate for strong convexity) 23
8.8 Theorem (convergence rate for non-convex case) . 24

9.4 Theorem (universal approximation theorem by 2-layer NNs) 28

31

Index of Defined Terms

𝑚-strong convexity, 23

affine function, 4

bag-of-words
representation, 3

batch normalization, 28
bias, 4

classification calibrated, 15
convexity, 21

dataset, 3
dropout, 28

feature, 3
feature extraction, 28

hidden layer, 25
hinge loss, 15

inner product, 4
input layer, 25

kernel, 28

kernel matrix, 19

label, 3
learning rate, 17
linear classifier, 4
linear function, 4
linear layer, 25
Lipschitz continuity, 22
logistic loss, 11
logit, 10

margin, 10, 13
matrix vectorization, 18
maximum likelihood

estimation, 11
minibatch, 26

normal equation, 9

one-vs.-all perceptron, 8
one-vs.-one perceptron, 8
output layer, 25

padding, 29
pooling, 28

positive semi-definite, 19
prediction layer, 25

quadratic classifier, 18

regularization term, 9
reproducing kernel, 18
ridge regression, 9

sigmoid transformation, 11
sign function, 4
softmax, 12
stochastic gradient descent,

21
stride, 29
sublinear decay, 26
support vector, 13
supporting hyperplanes, 13
symmetric, 19

test sample, 3
training sample, 3

vectorization, 28

32

	1 Classic Machine Learning
	1 Introduction
	2 Perceptron
	3 Linear Regression
	4 Logistic Regression
	5 Hard-Margin Support Vector Machines
	6 Soft-Margin Support Vector Machines
	7 Reproducing Kernels
	8 Gradient Descent

	2 Neural Networks
	9 Multilayer Perceptron
	10 Convolutional Neural Networks

	Back Matter
	List of Named Results
	Index of Defined Terms

